
© 1998-2008 Fast Reports Inc.

FastReport 4.6
Programmer's

manual

FastReport 4.6 Programmer's manualI

© 1998-2008 Fast Reports Inc.

Table of contents

Chapter I Working with TfrxReport
component 2

... 21 Loading and saving a report

... 32 Designing a report

... 33 Running a report

... 44 Previewing a report

... 45 Printing a report

... 46 Loading and saving a finished report

... 57 Exporting a report

... 58 Creating a custom preview window

... 69 Building a composite report (batch printing)

... 7Numbering of pages in a composite report

... 7Combination of pages in a composite report

... 710 Interactive reports

... 911 Access report objects from a code

... 1012 Creating a report form from code

... 1313 Creating a dialogue form from a code

... 1414 Modifying report page’s properties

... 1515 Report construction with the help of a code

... 1816 Printing an array

... 1917 Printing a TStringList

... 1918 Printing a file

... 1919 Printing a TStringGrid

... 2020 Printing TTable and TQuery

... 2021 Report inheritance

... 2222 Multithreading

... 2323 Reports caching

... 2324 MDI architecture

Chapter II Working with a list of variables 26

... 271 Creating a list of variables

... 282 Clearing a list of variables

... 283 Adding a category

... 294 Adding a variable

... 305 Deleting a variable

... 306 Deleting a category

IITable of contents

© 1998-2008 Fast Reports Inc.

... 307 Modifying the variable’s value

... 328 Script variables

... 329 Passing a variable value in the TfrxReport.OnGetValue

Chapter III Working with styles 35

... 371 Creation of style sets

... 392 Modifying/adding/deleting a style

... 403 Saving/restoring a set

... 414 Clear report styles

... 415 Styles library creation

... 426 Displaying a list of style sets, and application of a selected style

... 427 Modification/adding/deleting of a styles set

... 438 Saving and loading a styles library

© 1998-2008 Fast Reports Inc.

FastReport 4.6 Programmer's manualI

Chapter

I
Working with
TfrxReport
component

2 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

1.1 Loading and saving a report

By default, a report form is stored together with the project form, i.e. in a DFM
file. In most cases, no more operations required, and you thus would not need to take
special measures to load a report. If you decided to store a report form in a file or in the
DB BLOb-field (this provides great flexibility, i.e. you can modify a report without
recompiling the program), you would have to use the “TfrxReport” methods for report
loading and saving:

function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;

Loads a report from the file with the given name. If the second parameter is equal to
“True” and the file is not found, then it generates an exception. If the file is loaded
successfully, it returns “True.”

procedure LoadFromStream(Stream: TStream);

Loads a report from the stream.

procedure SaveToFile(const FileName: String);

Saves a report to a file with the specified name.

procedure SaveToStream(Stream: TStream);

Saves a report to a stream.

File with a report form has the “FR3” extension by default.

Examples:

Pascal:

frxReport1.LoadFromFile('c:\1.fr3');
frxReport1.SaveToFile('c:\2.fr3');

C++:

frxReport1->LoadFromFile("c:\\1.fr3");
frxReport1->SaveToFile("c:\\2.fr3");

3Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

1.2 Designing a report

Calling the report designer is performed via the “TfrxReport.DesignReport”
method. A designer must be included in your project (it is enough to either use the
“TfrxDesigner” component, or add the “frxDesgn” unit into the uses list).

The "DesignReport" method takes two default parameters:

procedure DesignReport(Modal: Boolean = True; MDIChild: Boolean = False);

The Modal parameter determines whether the designer should be modal. The
MDIChild parameter allows to make a designer window a MDI child window.

Example:

frxReport1.DesignReport;

1.3 Running a report

Applying one of the following two “TfrxReport” methods starts a report:

procedure ShowReport(ClearLastReport: Boolean = True);

Starts a report and displays the result in the preview window. If the “ClearLastReport”
parameter is equal to “False,” then the report will be added to the previously constructed
one, otherwise the previously constructed report will be cleared (by default).

function PrepareReport(ClearLastReport: Boolean = True): Boolean;

Starts a report, without opening the preview window. The parameter assignment is the
same as in the “ShowReport” method. If a report was constructed successfully, it returns
“True.”

In most cases, it is more convenient to use the first method. It displays the preview
window right away, while a report continues to be constructed.
The “ClearLastReport” parameter is convenient to use in case when it is necessary to add
another report to the previously constructed one (such technique is used for batch report
printing).

Example:

frxReport1.ShowReport;

4 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

1.4 Previewing a report

It is possible to display a report in the preview window in two ways: either by
calling the “TfrxReport.ShowReport” method (described above), or with the help of the
“TfrxReport.ShowPreparedReport” method. In the second case, the report construction is
not performed, but a finished report is displayed. That means, that you should either
construct it beforehand with the help of the “PrepareReport” method, or load a previously
constructed report from the file (see “Loading/saving a finished report”).

Example:

Pascal:

if frxReport1.PrepareReport then
 frxReport1.ShowPreparedReport;

C++:

if(frxReport1->PrepareReport(true))
 frxReport1->ShowPreparedReport();

In this case, report construction is finished first, and after that it is displayed in the
preview window. Construction of a large report can take a lot of time, and that is why it is
better to use the “ShowReport anisochronous” method, than the
“PrepareReport/ShowPreparedReport” one. One can assign preview settings by default
via the “TfrxReport.PreviewOptions” property.

1.5 Printing a report

In most cases, you will print a report from the preview window. To print a report
manually, you should use the “TfrxReport.Print” method, for example:

frxReport1.LoadFromFile(...);
frxReport1.PrepareReport;
frxReport1.Print;

At the same time, the dialogue, in which printing parameters can be set, will
appear. You can assign settings by default, and disable a printing dialogue with the help
of the “TfrxReport.PrintOptions” property.

1.6 Loading and saving a finished report

It can be executed from the preview window. This also can be performed
manually with the help of the “TfrxReport.PreviewPages” methods:

5Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

 function LoadFromFile(const FileName: String; ExceptionIfNotFound:
Boolean = False): Boolean;
 procedure SaveToFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);
 procedure SaveToStream(Stream: TStream);

Assignment and the parameters are similar to the corresponding TfrxReport
methods. A file, which contains the finished report, has “FP3” extension by default.

Example:

Pascal:

frxReport1.PreviewPages.LoadFromFile('c:\1.fp3');
frxReport1.ShowPreparedReport;

C++:

frxReport1->PreviewPages->LoadFromFile("c:\\1.fp3");
frxReport1->ShowPreparedReport();

Note, that after finished report loading is completed, its previewing is executed via
the “ShowPreparedReport” method!

1.7 Exporting a report

It can be performed from a preview window. The operation can also be executed
manually, via the “TfrxReport.Export” method. In the parameter of this method you
should specify the export filter you want to use:

frxReport1.Export(frxHTMLExport1);

The export filter component must be available (you must put it on the form of
your project) and be adjusted correctly.

1.8 Creating a custom preview window

FastReport displays reports in the standard preview window. If it does not suit you
for some reason, a custom preview form may be created. For this purpose, the
“TfrxPreview” component from the FastReport component palette was designed. To
display a report, the link to this component should be assigned to the
“TfrxReport.Preview” property.

There is two typical problems when using TfrxPreview component. It does not
handle keys (arrows, PgUp, PgDown etc) and mouse wheel (if any). To make

6 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

TfrxPreview working with keys, pass the focus to it (it can be done, for example, in the
OnShow event handler of a form):

frxPreview.SetFocus;

To make TfrxPreview working with mouse scroll, you have to create
OnMouseWheel event handler of a form and call TfrxPreview.MouseWheelScroll method
in this handler:

procedure TForm1.FormMouseWheel(Sender: TObject; Shift: TShiftState;
 WheelDelta: Integer; MousePos: TPoint; var Handled: Boolean);
begin
 frxPreview1.MouseWheelScroll(WheelDelta);
end;

1.9 Building a composite report (batch printing)

In some cases it is required to organize printing of several reports at once, or
capsulate and present several reports in one preview window. To perform this, there are
tools in FastReport, which allow building a new report in addition to an already existing
one. The «TfrxReport.PrepareReport» method has the optional «ClearLastReport»
Boolean parameter, which is equal to «True» by default. This parameter defines whether
it is necessary to clear pages of the previously built report. The following code shows how
to build a batch from two reports:

Pascal:

frxReport1.LoadFromFile('1.fr3');
frxReport1.PrepareReport;
frxReport1.LoadFromFile('2.fr3');
frxReport1.PrepareReport(False);
frxReport1.ShowPreparedReport;

C++:

frxReport1->LoadFromFile("1.fr3");
frxReport1->PrepareReport(true);
frxReport1->LoadFromFile("2.fr3");
frxReport1->PrepareReport(false);
frxReport1->ShowPreparedReport();

We load the first report and build it without displaying. Then we load the second
one into the same «TfrxReport» object and build it with the «ClearLastReport» parameter,
equal to «False». This allows the second report to be added to the one previously built.
After that, we display a finished report in the preview window.

7Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

1.9.1 Numbering of pages in a composite report

You can use the «Page,» «Page#,» «TotalPages,» and «TotalPages#» system
variables for displaying a page number or a total number of pages. In composite reports,
these variables work in the following way:

Page – page number in the current report
Page# - page number in the batch
TotalPages – total number of pages in the current report (a report must be a two-pass one)
TotalPages# - total number of pages in a batch.

1.9.2 Combination of pages in a composite report

As it was said above, the «PrintOnPreviousPage» property of the report design
page lets you splice pages when printing, i.e. using free space of the previous page. In
composite reports, it allows to start creation of a new report on free space of the previous
report’s last page. To perform this, one should enable the «PrintOnPreviousPage«
property of the first design page of each successive report.

1.10 Interactive reports

In interactive reports, one can define a reaction for mouse-click on any of the
report objects in a preview window. For example, a user can click on the data line, and
thus run a new report with detailed data of the selected line.

Any report can become interactive. To perform this, you only need to create a
TfrxReport.OnClickObject event handler. Here is a code example of this handler below:

Pascal:

procedure TForm1.frxReport1ClickObject(Page: TfrxPage; View: TfrxView;
 Button: TMouseButton; Shift: TShiftState; var Modified: Boolean);
begin
 if View.Name = 'Memo1' then
 ShowMessage('Memo1 contents:' + #13#10 + TfrxMemoView(View).Text);
 if View.Name = 'Memo2' then
 begin
 TfrxMemoView(View).Text := InputBox('Edit', 'Edit Memo2 text:', TfrxMemoView(View).Text);
 Modified := True;
 end;
end;

C++:

void __fastcall TForm1::frxReport1ClickObject(TfrxView *Sender,
 TMouseButton Button, TShiftState Shift, bool &Modified)
{

8 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

 TfrxMemoView * Memo;
 if(Memo = dynamic_cast <TfrxMemoView *> (Sender))
 {
 if(Memo->Name == "Memo1")
 ShowMessage("Memo1 contents:\n\r" + Memo->Text);
 if(Memo->Name == "Memo2")
 {
 Memo->Text = InputBox("Edit", "Edit Memo2 text:", Memo->Text);
 Modified = true;
 }
 }
}

In the «OnClickObject» handler, you can do the following:
- modify contents of an object or a page, passed to the handler (thus, the «Modified» flag
should be specified, so that the modifications would be taken into consideration);
- call the «TfrxReport.PrepareReport» method for reconstructing/rebuilding a report.

In this example, clicking on the object with the «Memo1» name results in
displaying a message with the contents of this object. When clicking on the «Memo2,» a
dialogue is displayed, where the contents of this object can be modified. Setting of the
«Modified» flag to «True» allows holding and displaying alterations.

In the same way, a different reaction for a click can be defined; it may, for
example, run a new report. It is necessary to NOTE the following. In the FastReport 3
version, one TfrxReport component can display only one report in the preview window
(unlike the FastReport 2.x version). That is why one should run a report either in a
separate TfrxReport object, or in the same one, but the current report must be erased.

To give a prompting indication about clickable objects to the end user, we can
modify the mouse cursor when it passes over a clickable object in the preview window.
To do this, select the desired object in the report designer and set it’s cursor property to
something other than crDefault.

One more detail concerns the defining clickable objects. In simple reports, this can
be defined either in the object’s name, or in its contents. However, this cannot always be
performed in more complicated cases. For example, a detailed report should be created in
a selected data line. A user clicked on the «Memo1» object with the '12' contents. What
data line does this object refer to? That is why you should know the primary key, which
identifies this line unambiguously. FastReport enables to assign a string, containing any
data (in our case the data of the primary key), to every report’s object. This string is stored
in the «TagStr» property.

Let us illustrate this process by an example of a report, which is included in the
FastReportDemo.exe - 'Simple list' demo. This is the list of clients of a company,
containing such data as «client’s name,» «address,» «contact person,» etc. The data source
is the «Customer.db» table from the DBDEMOS demo database. This table has a primary
key, i.e. the «CustNo» field, which is not presented in the report. Our task is to determine
what record it refers to by clicking on any object from the finished report, which means to

9Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

get the value of the primary key. To perform this, it is sufficient to enter the following
value into the «TagStr» property of all the objects, lying on the Master Data band:
[Customers."CustNo"]

During a report’s building, the «TagStr» property’s contents are calculated in the
same way, as contents of text objects are calculated; this means that the variables’ values
are substituted in place of all variables. A variable in this particular case is what is
enclosed into the square brackets. That is why the lines of the '1005', '2112', etc. types will
be contained in the «TagStr» property of the objects lying on the Master Data after report
building. A simple conversion from a string into an integer will give us a value of the
primary key, with which a required record can be found.

If the primary key is composite (i.e. it contains several fields) the «TagStr»
property’s contents can be the following:
[Table1."Field1"];[Table1."Field2"]

After constructing a report, the «TagStr» property contains values of the '1000;1'
type, from which it is rather not difficult to get values of a key as well.

1.11 Access report objects from a code

FastReport’ s objects (such as report page, band, memo-object) are not directly
accessible from your code. This means that you cannot address the object by its name, as,
for example, when you addressing to a button on your form. To address an object, it
should be found with the help of the «TfrxReport.FindObject» method:

Pascal:

var
 Memo1: TfrxMemoView;

Memo1 := frxReport1.FindObject('Memo1') as TfrxMemoView;

C++:

TfrxMemoView * Memo =
dynamic_cast <TfrxMemoView *> (frxReport1->FindObject("Memo1"));

after that, one can address the object’s properties and methods. You can address the report
’s pages using the «TfrxReport.Pages» property:

Pascal:

var
 Page1: TfrxReportPage;

Page1 := frxReport1.Pages[1] as TfrxReportPage;

10 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

C++:

TfrxReportPage * Page1 = dynamic_cast <TfrxReportPage *> (frxReport1->Pages[1]);

1.12 Creating a report form from code

As a rule, you will create most reports using the designer. Nevertheless, in some
cases (for example, when the report’s form is unknown) it is necessary to create a report
manually, from code.

To create a report manually, one should perform the following steps in order:
- clear the report component
- add data sources
- add the "Data" page
- add report’s page
- add bands on a page
- set bands’ properties, and then connect them to the data
- add objects on each band
- set objects’ properties, and then connect them to the data

Let us examine creation of a simple report of the «list» type. Assume that we have
the following components: frxReport1: TfrxReport and frxDBDataSet1: TfrxDBDataSet
(the last one is connected to data from the DBDEMOS, the «Customer.db» table). Our
report will contain one page with the «Report Title» and «Master Data» bands. On the
«Report Title» band there will be an object with the "Hello FastReport!" text, and the
«Master Data» one will contain an object with a link to the "CustNo" field.

Pascal:

var
 DataPage: TfrxDataPage;
 Page: TfrxReportPage;
 Band: TfrxBand;
 DataBand: TfrxMasterData;
 Memo: TfrxMemoView;

{ clear a report }
frxReport1.Clear;

{ add a dataset to the list of ones accessible for a report }
frxReport1.DataSets.Add(frxDBDataSet1);

{ add the "Data" page }
DataPage := TfrxDataPage.Create(frxReport1);

{ add a page }
Page := TfrxReportPage.Create(frxReport1);
{ create a unique name }
Page.CreateUniqueName;
{ set sizes of fields, paper and orientation by default }

11Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

Page.SetDefaults;
{ modify paper’s orientation }
Page.Orientation := poLandscape;

{ add a report title band}
Band := TfrxReportTitle.Create(Page);
Band.CreateUniqueName;
{ it is sufficient to set the «Top» coordinate and height for a band }
{ both coordinates are in pixels }
Band.Top := 0;
Band.Height := 20;

{ add an object to the report title band }
Memo := TfrxMemoView.Create(Band);
Memo.CreateUniqueName;
Memo.Text := 'Hello FastReport!';
Memo.Height := 20;
{ this object will be stretched according to band’s width }
Memo.Align := baWidth;

{ add the masterdata band }
DataBand := TfrxMasterData.Create(Page);
DataBand.CreateUniqueName;
DataBand.DataSet := frxDBDataSet1;
{ the Top coordinate should be greater than the previously added band’s top + height}
DataBand.Top := 100;
DataBand.Height := 20;

{ add an object on master data }
Memo := TfrxMemoView.Create(DataBand);
Memo.CreateUniqueName;
{ connect to data }
Memo.DataSet := frxDBDataSet1;
Memo.DataField := 'CustNo';
Memo.SetBounds(0, 0, 100, 20);
{ adjust the text to the right object’s margin }
Memo.HAlign := haRight;

{ show the report }
frxReport1.ShowReport;

C++:

TfrxDataPage * DataPage;
TfrxReportPage * Page;
TfrxBand * Band;
TfrxMasterData * DataBand;
TfrxMemoView * Memo;

// clear a report
frxReport1->Clear();

// add a dataset to the list of ones accessible for a report
frxReport1->DataSets->Add(frxDBDataset1);

// add the "Data" page
DataPage = new TfrxDataPage(frxReport1);

// add a page

12 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

Page = new TfrxReportPage(frxReport1);
// create a unique name
Page->CreateUniqueName();
// set sizes of fields, paper and orientation by default
Page->SetDefaults();
// modify paper’s orientation
Page->Orientation = poLandscape;

// add a report title band
Band = new TfrxReportTitle(Page);
Band->CreateUniqueName();
// it is sufficient to set the «Top» coordinate and height for a band
// both coordinates are in pixels
Band->Top = 0;
Band->Height = 20;

// add an object to the report title band
Memo = new TfrxMemoView(Band);
Memo->CreateUniqueName();
Memo->Text = "Hello FastReport!";
Memo->Height = 20;
// this object will be stretched according to band’s width
Memo->Align = baWidth;

// add the masterdata band
DataBand = new TfrxMasterData(Page);
DataBand->CreateUniqueName();
DataBand->DataSet = frxDBDataset1;
// the Top coordinate should be greater than the previously added band’s top + height
DataBand->Top = 100;
DataBand->Height = 20;

// add an object on master data
Memo = new TfrxMemoView(DataBand);
Memo->CreateUniqueName();
// connect to data
Memo->DataSet = frxDBDataset1;
Memo->DataField = "CustNo";
Memo->SetBounds(0, 0, 100, 20);
// adjust the text to the right object’s margin
Memo->HAlign = haRight;

// show the report
frxReport1->ShowReport(true);

Let us explain some details.

All the data sources, which are to be used in the report, must be added to the list of
data sources. In our case, this is performed using the
«frxReport1.DataSets.Add(frxDBDataSet1)» line. Otherwise, a report will not work.

The "Data" page is necessary for inserting internal datasets such as TfrxADOTable
into the report. Such datasets can be placed only to the "Data" page.

The call for Page.SetDefaults is not necessary, since in this case a page will have the А4

13Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

format and margins of 0 mm. SetDefaults sets 10mm margins and takes page size and
alignment, which a printers have by default.

While adding bands to a page, you should make sure they do not overlap each
other. To perform this, it is sufficient to set the «Top» and «Height» coordinates. There is
no point in modifying the «Left» and «Width» coordinates, since a band always has the
width of the page, on which it is located (in case of vertical bands it's not true – you
should set Left and Width properties and don't care about Top and Height). One should
note, that the order of bands’ location on a page is of great importance. Always locate
bands in the same way you would do it in the designer.

Objects’ coordinates and sizes are set in pixels. Since the «Left,» «Top,» «Width,»
and «Height» properties of all objects have the «Extended» type, you can point out
non-integer values. The following constants are defined for converting pixels into
centimeters and inches:

fr01cm = 3.77953;
fr1cm = 37.7953;
fr01in = 9.6;
fr1in = 96;

For example, a band’s height equal to 5 mm can be set as follows:

Band.Height := fr01cm * 5;
Band.Height := fr1cm * 0.5;

1.13 Creating a dialogue form from a code

As we know, a report can contain dialogue forms. The following example shows
how to create a dialogue form, with an «OK» button:

Pascal:

 { for working with dialogue objects the following unit should be used }
uses frxDCtrl;

var
 Page: TfrxDialogPage;
 Button: TfrxButtonControl;

{ add a page }
Page := TfrxDialogPage.Create(frxReport1);
{ create a unique name }
Page.CreateUniqueName;
{ set sizes }
Page.Width := 200;
Page.Height := 200;
{ set a position }
Page.Position := poScreenCenter;

14 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

{ add a button }
Button := TfrxButtonControl.Create(Page);
Button.CreateUniqueName;
Button.Caption := 'OK';
Button.ModalResult := mrOk;
Button.SetBounds(60, 140, 75, 25);

{ show a report }
frxReport1.ShowReport;

C++:

// for working with dialogue objects the following unit should be used
#include "frxDCtrl.hpp"

TfrxDialogPage * Page;
TfrxButtonControl * Button;

// add a page
Page = new TfrxDialogPage(frxReport1);
// create a unique name
Page->CreateUniqueName();
// set sizes
Page->Width = 200;
Page->Height = 200;
// set a position
Page->Position = poScreenCenter;

// add a button
Button = new TfrxButtonControl(Page);
Button->CreateUniqueName();
Button->Caption = "OK";
Button->ModalResult = mrOk;
Button->SetBounds(60, 140, 75, 25);

// show a report
frxReport1->ShowReport(true);

1.14 Modifying report page’s properties

Sometimes it is necessary to modify report page settings (for example, to modify
paper alignment or size) from a code. The TfrxReportPage class contains the following
properties, defining the size of the page:

 property Orientation: TPrinterOrientation default poPortrait;
 property PaperWidth: Extended;
 property PaperHeight: Extended;
 property PaperSize: Integer;

The «PaperSize» property sets paper format. This is one of the standard values,
defined in the Windows.pas (for example, DMPAPER_A4). If a value to this property is
assigned, FastReport fills the «PaperWidth» and «PaperHeight» properties automatically

15Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

(paper size in millimeters). Setting the DMPAPER_USER (or 256) value as a format,
would mean that custom paper size is set. In this case, the «PaperWidth» and
«PaperHeight» properties should be filled manually.

The following example shows, how to modify parameters of the first page (it is
assumed that we already have a report):

Pascal:

var
 Page: TfrxReportPage;

{ the first report’s page has [1] index. [0] is the Data page. }
Page := TfrxReportPage(frxReport1.Pages[1]);
{ modify the size }
Page.PaperSize := DMPAPER_A2;
{ modify the paper orientation }
Page.Orientation := poLandscape;

C++:

TfrxReportPage * Page;

// the first report’s page has [1] index. [0] is the Data page.
Page = (TfrxReportPage *)frxReport1.Pages[1];
// modify the size
Page->PaperSize = DMPAPER_A2;
// modify the paper orientation
Page->Orientation = poLandscape;

1.15 Report construction with the help of a code

The FastReport engine usually is responsible for report’s constructing. It shows
report’s bands in a particular order as many times, as the datasource to which it is
connected requires, thus forming a finished report. Sometimes it is necessary to create a
report of a non-standard form, which FastReport’s engine is unable to produce. In this
case, one can use the ability of constructing a report manually, with the help of the
«TfrxReport.OnManualBuild» event. If to define a handler of this event, the FastReport
engine sends management to it. At the same time, allocation of responsibilities for
forming a report is changed in the following way:

FastReport engine:
- report’s preparation (script, data sources initialization, bands’ tree forming)
- all calculations (aggregate functions, event handlers)
- new pages/columns’ forming (automatic showing a page/column header/footer, report
title/summary)
- other routine work

Handler:
- bands’ presentation in a certain order

16 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

The «OnManualBuild» handler’s essence is to issue commands concerning
presenting certain bands to the FastReport’s engine. The engine itself will do the rest: a
new page will be created, as soon as there is no place in the current one; execution of
scripts will be performed, etc.

The engine is represented with the «TfrxCustomEngine» class. A link to the
instance of this class is located in the «TfrxReport.Engine» property.

procedure NewColumn;

Creates a new column. If a column is the last one, it creates a new page.

procedure NewPage;

Creates a new page.

procedure ShowBand(Band: TfrxBand); overload;

Presents a band.

procedure ShowBand(Band: TfrxBandClass); overload;

Presents a band of the given type.

function FreeSpace: Extended;

Returns the amount of free space on the page (in pixels). After the next band is presented,
this value descends.

property CurColumn: Integer;

Returns/sets the current column’s number

property CurX: Extended;

Returns/sets the current X position.

property CurY: Extended;

Returns/sets the current Y position. After the next band is presented, this value ascends.

property DoublePass: Boolean;

Defines whether a report is a two-pass one.

property FinalPass: Boolean;

Defines whether the current pass is the last one.

property FooterHeight: Extended;

Returns the page footer height.

property HeaderHeight: Extended;

Returns the page header height.

property PageHeight: Extended;

Returns the height of the page’s printable region.

17Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

property PageWidth: Extended;

Returns the width of the page’s printable region.

property TotalPages: Integer;

Returns the number of pages in a finished report (only on the second pass of the two-pass
report).

Let us give an example of a simple handler. There is two «Master Data» bands in a
report, which are not connected to data. The handler presents these bands in an interlaced
order, six times each one. After six bands, a small gap is made.

Pascal:

var
 i: Integer;
 Band1, Band2: TfrxMasterData;

{ find required bands }
Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;

for i := 1 to 6 do
begin
 { lead/deduce bands one after another }
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 { make a small gap }
 if i = 3 then
 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
end;

C++:

int i;
TfrxMasterData * Band1;
TfrxMasterData * Band2;

// find required bands
Band1 := dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData1"));
Band2 := dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData2"));

for(i = 1; i <= 6; i++)
{
 // lead/deduce bands one after another
 frxReport1->Engine->ShowBand(Band1);
 frxReport1->Engine->ShowBand(Band2);
 // make a small gap
 if(i == 3)
 frxReport1->Engine->CurY += 10;
}

The next example shows two groups of bands alongside each other.

Pascal:

18 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

var
 i, j: Integer;
 Band1, Band2: TfrxMasterData;
 SaveY: Extended;

Band1 := frxReport1.FindObject('MasterData1') as TfrxMasterData;
Band2 := frxReport1.FindObject('MasterData2') as TfrxMasterData;

SaveY := frxReport1.Engine.CurY;
for j := 1 to 2 do
begin
 for i := 1 to 6 do
 begin
 frxReport1.Engine.ShowBand(Band1);
 frxReport1.Engine.ShowBand(Band2);
 if i = 3 then
 frxReport1.Engine.CurY := frxReport1.Engine.CurY + 10;
 end;
 frxReport1.Engine.CurY := SaveY;
 frxReport1.Engine.CurX := frxReport1.Engine.CurX + 200;
end;

C++:

int i, j;
TfrxMasterData * Band1;
TfrxMasterData * Band2;
Extended SaveY;

Band1 = dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData1"));
Band2 = dynamic_cast <TfrxMasterData *> (frxReport1->FindObject("MasterData2"));

SaveY = frxReport1->Engine->CurY;
for(j = 1; j <= 2; j++)
{
 for(i = 1; i <= 6; i++)
 {
 frxReport1->Engine->ShowBand(Band1);
 frxReport1->Engine->ShowBand(Band2);
 if(i == 3)
 frxReport1->Engine->CurY += 10;
 }
 frxReport1->Engine->CurY = SaveY;
 frxReport1->Engine->CurX += 200;
}

1.16 Printing an array

The primary example’s code is located in the «FastReport Demos\PrintArray» (
"FastReport Demos\BCB Demos\PrintArray") directory. Let us explain several details.

To print an array, we use a report with one «Master Data» band, which will be
presented as many times, as there are elements in the array. To do this, place a

19Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

«TfrxUserDataSet» component on the form, and then set it’s properties (it is possible to
do it in a code, as shown in our example):

 RangeEnd := reCount
 RangeEndCount := a number of elements in an array

After that, we connect the data-band to the «TfrxUserDataSet» component. To
represent the array element, place a text object with the [element] line inside the «Master
Data» band. The «element» variable is filled using a «TfrxReport.OnGetValue» event.

1.17 Printing a TStringList

The primary example’s code is located in the «FastReport Demos\PrintStringList»
(«FastReport Demos\BCB Demos\PrintStringList») directory. The method is the same, as
in the example with an array.

1.18 Printing a file

The primary example’s code is located in the «FastReport Demos\PrintFile» (
«FastReport Demos\BCB Demos\PrintFile») directory. Let us explain several details.

For printing, you should use a report with a «Master Data» band, which will be
printed once (to perform this, it should be connected to a data source, which contains one
record; select a source named "Single row" from the list). Stretching («Stretch») and
splitting («Allow Split») are enabled in the band. This means, that the way the band is
stretched allows finding room for all objects located in it. However, if a band does not
find room in a page, it will be presented partially in separate pages.

File contents are presented via the «Text» object, which contains the [file]
variable. This variable, as in the previous examples, is filled in the
«TfrxReport.OnGetValue» event. Stretching is also enabled in the object (the «Stretch»
item from the contextual menu or the «StretchMode» property = smActualHeight).

1.19 Printing a TStringGrid

The initial example’s code is located in the «FastReport Demos\PrintStringGrid» (
«FastReport Demos\BCB Demos\PrintStringGrid»") directory. Let us explain some
details.

The «TStringGrid» component represents a table with several rows and columns.
That means that a report stretches not only by height, but by width as well. To print such

20 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

component, let us use the «Cross-tab» object (it becomes available when the
«TfrxCrossObject» component is added to the project). This object is responsible only for
printing table data with a number of rows and columns unknown beforehand. The object
has two versions: «TfrxCrossView» for user’s data printing, and «TfrxDBCrossView» for
printing the specially prepared data from the DB table.

Let us use the TfrxCrossView. The object should be preliminarily set. To perform
this, let us enter report’s designer and call the object editor by double-clicking on it. We
must set the number of the rows and columns’ titles nesting, and the number of values in
the table cells. In our case, all these values must be equal to «1». In our example, the rows
and columns’ titles and the total values of lines and columns are disabled as well.
It is necessary to fill the object with values from the StringGrid in the
«TfrxReport.OnBeforePrint» event. A value is added via the «TfrxCrossView.AddValue»
method. Its parameters are the following: composite index of a line, a column and the cell
’s value (which is composite as well, since an object can contain several values in a cell).

1.20 Printing TTable and TQuery

The initial example’s code is located in the «FastReport’s Demos\PrintTable» (
«FastReport Demos\BCB Demos\PrintTable»") directory. The principle of work is the
same, as in the example with the TStringGrid. In this case, the row’s index is its sequence
number, the column’s index is the name of a table field, and the cell’s value is the table
field’s value. It is important to notice that the functions for cell’s elements must be
disabled in the «Cross-tab» object editor (since in a cell there are data of various kinds,
this leads to the error in table creation) and the table title’s sorting must be disabled too
(otherwise columns will be sorted alphabetically).

1.21 Report inheritance

The report inheritance was described in the User's manual. We will describe some
key moments here.

If you store your reports in files, you need to set up the folder name which
FastReport will use to search the base report. This folder's content will be displayed in the
"File|New..." and "Report|Options..." dialogs:

21Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

The TfrxDesigner.TemplateDir property is used for this purpose. By defalt it is
empty, FastReport will search for base reports in the folder with your project's executable
file (.exe). You can place the absolute or relative path into this property.

If you store your reports in the database, you have to write a code to load the base
report from a DB and to get a list of available base reports. Use TfrxReport.
OnLoadTemplate event to load a base report:

property OnLoadTemplate: TfrxLoadTemplateEvent read FOnLoadTemplate write FOnLoadTemplate;

TfrxLoadTemplateEvent = procedure(Report: TfrxReport; const TemplateName: String) of object;

This event's handler must load a base report with given TemplateName into
Report object. Here is an example of such handler:

procedure TForm1.LoadTemplate(Report: TfrxReport; const TemplateName: String);
var
 BlobStream: TStream;
begin
 ADOTable1.First;
 while not ADOTable1.Eof do
 begin
 if AnsiCompareText(ADOTable1.FieldByName('ReportName').AsString, TemplateName) = 0 then
 begin
 BlobStream := TMemoryStream.Create;
 TBlobField(ADOTable1.FieldByName('ReportBlob')).SaveToStream(BlobStream);
 BlobStream.Position := 0;
 Report.LoadFromStream(BlobStream);
 BlobStream.Free;

22 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

 break;
 end;
 ADOTable1.Next;
 end;
end;

To get a list of available templates, you should use the
TfrxDesigner.OnGetTemplateList event:

property OnGetTemplateList: TfrxGetTemplateListEvent read FOnGetTemplateList write FOnGetTemplateList;

TfrxGetTemplateListEvent = procedure(List: TStrings) of object;

This event's handler must return a list of available templates into List parameter.
Here is an example of such handler:

procedure TForm1.GetTemplates(List: TList);
begin
 List.Clear;
 ADOTable1.First;
 while not ADOTable1.Eof do
 begin
 List.Add(ADOTable1.FieldByName('ReportName').AsString);
 ADOTable1.Next;
 end;
end;

Fast Report can inherit already created reports. For that you should use the following
function: TfrxReport.InheritFromTemplate(const templName: String; Inherit Mode:
Tfrx Inherit Mode = imDefault): Boolean.
 This function allows to inherit the current loaded report from the indicated report. The
first parameter of the function is a name and path of parent template, the second one
allows to choose inherit mode imDefault - derive the dialogue with offer to rename/delete
the duplicates ,imDelete - delete all backup objects imRename - rename all backup
objects.

 Attention!
The search of parent template is done referring the current template, that is necessary to
keep catalogues structure at report storage place. Fast Report uses relative paths that's why
there is no need to worry about application transfer,(the only exception is when the
current pattern and parent template are placed on different carriers or net path is used).

1.22 Multithreading

FastReport can operate independently in different threads , but there are some
features:

- You can not create TfrxDBDataSet even in different threads, because "global
list" is used for search " and access will always take place to the first created

23Working with TfrxReport component

© 1998-2008 Fast Reports Inc.

TfrxDBDataSet (you can switch off the use of global list , its active by default);

- If during report execution there are some changes in object characteristics (for
example,Memo1.Left := Memo1.Left + 10 in script), than you need to remember that
during the next operation if the property TfrxReport.EngineOptions.DestroyForms :=
False report template will already be modified and it will need to be reloaded or to use
TfrxReport.EngineOptions.DestroyForms := True. During renewal you can't use
interactive reports from the thread, because script's objects are deleted after renewal,
that's why in some cases it is efficiently to use TfrxReport.EngineOptions.DestroyForms :
= False and to renew the template on your own during the next building cycle.

If necessary the global list due to which you can search the needed copies of
TfrxDBDataSet can be switched off.

{DestroyForms can be switched off, if every time you renew a report from a file or from a current}
 FReport.EngineOptions.DestroyForms := False;
 FReport.EngineOptions.SilentMode := True;
 { This property switches off the search through global list}
 FReport.EngineOptions.UseGlobalDataSetList := False;
 {EnabledDataSets plays local list role, you should install it before the template is loaded}
 FReport.EnabledDataSets.Add(FfrxDataSet);
 FReport.LoadFromFile(ReportName);
 FReport.PrepareReport;

1.23 Reports caching

The reports and it's data can be cached both in memory (for speed increasing)
and in file on the disk (for saving RAM recourses). There are several types of caching in
Fast Report:

- TfrxReport.EngineOptions.UseFileCache - if the property is installed in True,
than the whole text and objects of built report are saved in temporary file on disk, at that
TfrxReport.EngineOptions.MaxMemoSize indicates how many MB are meant for the
template in RAM .

- TfrxReport.PreviewOptions.PagesInCache - the number of pages which can be
kept in cache memory greatly increases preview speed , but spends much memory
(especially when there are pictures in a template).

- TfrxReport.PreviewOptions.PictureCacheInFile - if the property is on, than all
the pictures of built report are saved in temporary file on a disk, that greatly reduces
memory use in reports with a large amount of pictures, but it reduces the speed.

1.24 MDI architecture

In Fast Report there is a n opportunity of creating MDI applications both for
preview and for designer. The source code of the example is in FastReport Demos\MDI
Designer catalogue.

 It is worthy to mention that its advisable to create your own TfrxReport for each

24 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

preview window or designer, otherwise all windows will refer to the same report.

Chapter

II
Working with a
list of variables

26 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

The notion of variables was minutely explained in the corresponding chapter. Let
us briefly call to mind the main points.

A user can specify one or several variables in a report. A value or an expression,
which will be automatically calculated when referring to a variable, can be assigned to
every variable. Variables can be visually inserted into a report via the “Data tree”
window. It is convenient to use variables for aliasing of compound expressions, which are
often used in a report.

It is necessary to use the “frxVariables” unit when working with variables.
Variables are represented by the “TfrxVariable” class.

 TfrxVariable = class(TCollectionItem)
 published
 property Name: String;

Name of a variable

 property Value: Variant;

Value of a variable
 end;

The list of variables is represented by the “TfrxVariables” class. It contains all
methods necessary for working with the list.

 TfrxVariables = class(TCollection)
 public
 function Add: TfrxVariable;

Adds a variable to the end of the list

 function Insert(Index: Integer): TfrxVariable;

Adds a variable to the given position of the list

 function IndexOf(const Name: String): Integer;

Returns the index of a variable with the given name

 procedure AddVariable(const ACategory, AName: String; const AValue:
Variant);

Adds a variable to the specified category

 procedure DeleteCategory(const Name: String);

Deletes a category and all its variables

 procedure DeleteVariable(const Name: String);

Deletes a variable

 procedure GetCategoriesList(List: TStrings; ClearList: Boolean =
True);

27Working with a list of variables

© 1998-2008 Fast Reports Inc.

Returns the list of categories

 procedure GetVariablesList(const Category: String; List: TStrings);

Returns the list of variables in the specified category

 property Items[Index: Integer]: TfrxVariable readonly;

The list of variables

 property Variables[Index: String]: Variant; default;

Values of variables

 end;

If the list of variables is long, it is convenient to group it by categories. For
example, when having the following list of variables:

Customer name
Account number
in total
total vat

one can represent it in the following way:

Properties
 Customer name
 Account number
Totals
 In total
 total vat

There are the following limitations:

- at least one category must be created
- categories form the first level of the data tree, variables form the second one
- categories cannot be nested
- variables’ names must be unique within a whole list, not within a category

2.1 Creating a list of variables

A link to the report variables is stored in the “TfrxReport.Variables” property. To
create a list manually, the following steps must be performed:
- clear the list
- create a category
- create variables

28 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

- repeat the 2 and 3 steps to create another category.

2.2 Clearing a list of variables

It is performed with the help of the “TfrxVariables.Clear” method:

Pascal:

frxReport1.Variables.Clear;

C++:

frxReport1->Variables->Clear();

2.3 Adding a category

It is required to create at least one category. Categories and variables are stored in
one list. The category differs from a variable by the “space,” which is the first symbol of
the name. All variables located in the list after the category, are considered belonging to
this category.

Process of adding a category to the list can be performed in two ways:

Pascal:

frxReport1.Variables[' ' + 'My Category 1'] := Null;

C++:

frxReport1->Variables->Variables[" My Category 1"] = NULL;

or

Pascal:

var
 Category: TfrxVariable;

Category := frxReport1.Variables.Add;
Category.Name := ' ' + 'My category 1';

C++:

TfrxVariable * Category;

Category = frxReport1->Variables->Add();
Category->Name = " My category 1";

29Working with a list of variables

© 1998-2008 Fast Reports Inc.

2.4 Adding a variable

Variables can be added only after a category is already added. All the variables
located in the list after the category, are considered belonging to this category. Variables’
names must be unique within the whole list, and not within a category

There are several ways to add a variable to the list:

Pascal:

frxReport1.Variables['My Variable 1'] := 10;

C++:

frxReport1->Variables->Variables["My Variable 1"] = 10;

this way adds a variable (if it does not exist already) or modifies a value of the existing
variable.

Pascal:

var
 Variable: TfrxVariable;

Variable := frxReport1.Variables.Add;
Variable.Name := 'My Variable 1';
Variable.Value := 10;

C++:

TfrxVariable * Variable;

Variable = frxReport1->Variables->Add();
Variable->Name = "My Variable 1";
Variable->Value = 10;

Both of the ways add a variable to the end of the list, therefore, it would be added
to the last category. If a variable is supposed to be added to a specified position of the list,
use the “Insert” method:

Pascal:

var
 Variable: TfrxVariable;

Variable := frxReport1.Variables.Insert(1);
Variable.Name := 'My Variable 1';
Variable.Value := 10;

C++:

TfrxVariable * Variable;

30 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

Variable = frxReport1->Variables->Insert(1);
Variable->Name = "My Variable 1";
Variable->Value = 10;

If a variable is to be added to the specified category, use the “AddVariable”
method:

Pascal:

frxReport1.Variables.AddVariable('My Category 1', 'My Variable 2', 10);

C++:

frxReport1->Variables->AddVariable("My Category 1", "My Variable 2",
10);

2.5 Deleting a variable

Pascal:

frxReport1.Variables.DeleteVariable('My Variable 2');

C++:

frxReport1->Variables->DeleteVariable("My Variable 2");

2.6 Deleting a category

To delete a category with all its variables, use the following code:

Pascal:

frxReport1.Variables.DeleteCategory('My Category 1');

C++:

frxReport1->Variables->DeleteCategory("My Category 1");

2.7 Modifying the variable’s value

There are two ways to modify the value of a variable:

Pascal:

frxReport1.Variables['My Variable 2'] := 10;

C++:

frxReport1->Variables->Variables["My Variable 2"] = 10;

31Working with a list of variables

© 1998-2008 Fast Reports Inc.

or

Pascal:

var
 Index: Integer;
 Variable: TfrxVariable;

{ search for the variable }
Index := frxReport1.Variables.IndexOf('My Variable 2');
{ if it is found, change a value }
if Index <> -1 then
begin
 Variable := frxReport1.Variables.Items[Index];
 Variable.Value := 10;
end;

C++:

int Index;
TfrxVariable * Variable;

// search for the variable
Index = frxReport1->Variables->IndexOf("My Variable 2");
// if it is found, change a value
if(Index != -1)
{
 Variable = frxReport1->Variables->Items[Index];
 Variable->Value = 10;
}

It should be noted, that when accessing a report variable its value is calculated if it
is of string type. That means the variable which value is 'Table1."Field1"' will return a
value of a DB field, but not the 'Table1."Field1"' string. You should be careful when
assigning a string-type values to report variables. For example, the next code will raise
exception "unknown variable 'test'" when running a report:

frxReport1.Variables['My Variable'] := 'test';

because FastReport trying to calculate a value of such variable. The right way to pass a
string values is:

frxReport1.Variables['My Variable'] := '''' + 'test' + '''';

In this case the variable value - string 'test' will be shown without errors. But keep
in mind that:
- string should not contain single quotes. All single quotes must be doubled;
- string should not contain #13#10 symbols.

In some cases it is easier to pass variables using a script.

32 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

2.8 Script variables

Instead of report variables, script variables are in the TfrxReport.Script. You can
define them using FastScript methods. Let's look at some differences between report and
script variables::

Report variables Script variables

Placement In the report variables list,
TfrxReport.Variables.

In the report script,
TfrxReport.Script.Variables.

Variable name May contain any symbols. May contain any symbols. But if
you want to use that variable
inside the report script, its name
should conform to Pascal
identificator specifications.

Variable value May be of any type. Variables
of string type are calculated
each time you access them, and
are, in itself, an expressions.

May be of any type. No
calculation is performed,
behavior is like standard language
variable.

Accessibility Programmer can see the list of
report variables in the "Data
tree" window.

The variable is not visible,
programmer should know about
it.

Working with script variables is easy. Just assign value to the variable this way:

Pascal:

frxReport1.Script.Variables['My Variable'] := 'test';

C++:

frxReport1->Script->Variables->Variables["My Variable"] = "test";

In this case FastReport will create a variable if it is not exists, or assign a value to
it. There is no need to use extra quotes when assigning a string to that variable.

2.9 Passing a variable value in the TfrxReport.OnGetValue

The last way to pass a value to a report is to use TfrxReport.OnGetValue event
handler. This way is convenient in case you need to pass a dynamic value (that may
change from record to record). Two previous ways are useful to pass static values.

Let's look at example of using that way. Let's create the report and lay the "Text"
object to it. Type the following text in this object:
[My Variable]

33Working with a list of variables

© 1998-2008 Fast Reports Inc.

Now create the TfrxReport.OnGetValue event handler:

procedure TForm1.frxReport1GetValue(const VarName: String;
 var Value: Variant);
begin
 if CompareText(VarName, 'My Variable') = 0 then
 Value := 'test'
end;

Run the report and we will see that variable is shown correctly. The
TfrxReport.OnGetValue event handler is called each time when FastReport finds
unknown variable. The event handler should return a value of that variable.

Chapter

III
Working with
styles

35Working with styles

© 1998-2008 Fast Reports Inc.

First of all, let us call to mind, what “style”, “set of styles” and “library of styles”
are.
Style is an element, which possesses a name and properties, and determines design
attributes, i.e. color, font and frame. The style determines the way a report object should
be designed. The objects such as TfrxMemoView have the Style property, which is a
property intended to set the style name. When applying a value to this property, the style
design attributes are copied to the object.

A set of styles consists of several styles, which refer to a report. The “TfrxReport”
component has the “Styles” property, which refers to the object of the “TfrxStyles” type.
The set of styles also possesses a name. The set of styles determines design of a whole
report.

A styles library includes several sets of styles. It is convenient to perform a
selection of a concrete set for report design with the help of the library.

The TfrxStyleItem represents a style.

 TfrxStyleItem = class(TCollectionItem)
 public
 property Name: String;

Style name.

 property Color: TColor;

Background color.

 property Font: TFont;

Font.

 property Frame: TfrxFrame;

Frame.
 end;

The set of styles is represented by the TfrxStyles class. It comprises methods for
performing such set operations as reading, saving, adding, deleting, as well as searching
for a style. The set of styles file has FS3 extension by default.

 TfrxStyles = class(TCollection)
 public
 constructor Create(AReport: TfrxReport);

Creates the styles set. One can specify “nil” instead of “AReport,” however in this case a
user would be unable to use the “Apply” method.

 function Add: TfrxStyleItem;

Adds a new style.

36 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

 function Find(const Name: String): TfrxStyleItem;

Returns the style with the given name.

 procedure Apply;

Applies a set to a report.

 procedure GetList(List: TStrings);

Returns the list of the styles names.

 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);

 Reads a set.

 procedure SaveToFile(const FileName: String);
 procedure SaveToStream(Stream: TStream);

Saves a set.

 property Items[Index: Integer]: TfrxStyleItem; default;

The list of styles.

 property Name: String;

A set’s name.

 end;

In conclusion, the last “TfrxStyleSheet” class represents a styles’ library. It has
methods for the library reading/saving, as well as adding, deleting, and style sets’
searching.

 TfrxStyleSheet = class(TObject)
 public
 constructor Create;

Constructs a library.

 procedure Clear;

Clears a library.

 procedure Delete(Index: Integer);

Deletes a set with certain number.

 procedure GetList(List: TStrings);

Returns the list of the names of styles’ sets.

 procedure LoadFromFile(const FileName: String);
 procedure LoadFromStream(Stream: TStream);

Loads a library.

 procedure SaveToFile(const FileName: String);

37Working with styles

© 1998-2008 Fast Reports Inc.

 procedure SaveToStream(Stream: TStream);

Saves a library.

 function Add: TfrxStyles;

Adds a new set of styles to the library.

 function Count: Integer;

Returns a number of styles’ sets in the library.

 function Find(const Name: String): TfrxStyles;

Returns a set with the set name.

 function IndexOf(const Name: String): Integer;

Returns a set number with the given name.

 property Items[Index: Integer]: TfrxStyles; default;

The list of styles’ sets.

 end;

3.1 Creation of style sets

The following code demonstrates processes of creation of styles set, and addition
of two styles to a set. After these operations are completed, the styles are applied to the
report.

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := TfrxStyles.Create(nil);

{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';

{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReport1.Styles := Styles;

C++:

TfrxStyleItem * Style;

38 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

TfrxStyles * Styles;

Styles = new TfrxStyles(NULL);

// the first style
Style = Styles->Add();
Style->Name = "Style1";
Style->Font->Name = "Courier New";

// the second style
Style = Styles->Add();
Style->Name = "Style2";
Style->Font->Name = "Times New Roman";
Style->Frame->Typ << ftLeft << ftRight;

// apply a set to the report
frxReport1->Styles = Styles;

You can create and use a set in a different way:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;
Styles.Clear;

{ the first style }
Style := Styles.Add;
Style.Name := 'Style1';
Style.Font.Name := 'Courier New';

{ the second style }
Style := Styles.Add;
Style.Name := 'Style2';
Style.Font.Name := 'Times New Roman';
Style.Frame.Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReport1.Styles.Apply;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;
Styles->Clear();

// the first style
Style = Styles->Add();
Style->Name = "Style1";
Style->Font->Name = "Courier New";

// the second style
Style = Styles->Add();
Style->Name = "Style2";

39Working with styles

© 1998-2008 Fast Reports Inc.

Style->Font->Name = "Times New Roman";
Style->Frame->Typ << ftLeft << ftRight;

// apply a set to the report
frxReport1->Styles->Apply();

3.2 Modifying/adding/deleting a style

Modifying a style with the given name:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ search for a style}
Style := Styles.Find('Style1');

{ modify the font size }
Style.Font.Size := 12;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;

// search for a style
Style = Styles->Find("Style1");

// modify the font size
Style->Font->Size = 12;

Adding a style to the report styles set:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ add }
Style := Styles.Add;
Style.Name := 'Style3';

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

40 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

Styles = frxReport1->Styles;

// add
Style = Styles->Add();
Style->Name = "Style3";

Deleting a style with a given name:

Pascal:

var
 Style: TfrxStyleItem;
 Styles: TfrxStyles;

Styles := frxReport1.Styles;

{ delete }
Style := Styles.Find('Style3');
Style.Free;

C++:

TfrxStyleItem * Style;
TfrxStyles * Styles;

Styles = frxReport1->Styles;

// delete
Style = Styles->Find("Style3");
delete Style;

After modifications are accomplished, you should call the “Apply” method:

{ use modifications }
frxReport1.Styles.Apply;

3.3 Saving/restoring a set

Pascal:

frxReport1.Styles.SaveToFile('c:\1.fs3');
frxReport1.Styles.LoadFromFile('c:\1.fs3');

C++:

frxReport1->Styles->SaveToFile("c:\\1.fs3");
frxReport1->Styles->LoadFromFile("c:\\1.fs3");

41Working with styles

© 1998-2008 Fast Reports Inc.

3.4 Clear report styles

It can be performed in two ways:

frxReport1.Styles.Clear;

or

frxReport1.Styles := nil;

3.5 Styles library creation

The following example illustrates how to create a library and add two sets of
styles to it.

Pascal:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

StyleSheet := TfrxStyleSheet.Create;

{ the first set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles1';
{ here one can add styles to the Styles set}

{ the second set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles2';
{ here one can add styles to the Styles set}

C++:

TfrxStyles * Styles;
TfrxStyleSheet * StyleSheet;

StyleSheet = new TfrxStyleSheet;

// the first set
Styles = StyleSheet->Add();
Styles->Name = "Styles1";
// here one can add styles to the Styles set

// the second set
Styles = StyleSheet->Add();
Styles->Name = "Styles2";
// here one can add styles to the Styles set

42 FastReport 4.6 Programmer's manual

© 1998-2008 Fast Reports Inc.

3.6 Displaying a list of style sets, and application of a selected style

Style libraries are frequently used for displaying accessible style sets in such
controls as “ComboBox” or “ListBox.” After that, the set, selected by a user, is applied to
a report.

Displaying the list:

StyleSheet.GetList(ComboBox1.Items);

Usage of the selected set to a report:

frxReport1.Styles := StyleSheet.Items[ComboBox1.ItemIndex];

or
frxReport1.Styles := StyleSheet.Find[ComboBox1.Text];

3.7 Modification/adding/deleting of a styles set

Modification of a set with the specified name:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

{ search for the required set }
Styles := StyleSheet.Find('Styles2');

{ modify a style with the Style1 name from the found set }
with Styles.Find('Style1') do
 Font.Name := 'Arial Black';

Adding a set to a library:

var
 Styles: TfrxStyles;
 StyleSheet: TfrxStyleSheet;

{ the third set }
Styles := StyleSheet.Add;
Styles.Name := 'Styles3';

Deleting a set from a library:

var
 i: Integer;
 StyleSheet: TfrxStyleSheet;

{ search for the third set }
i := StyleSheet.IndexOf('Styles3');
{ if find, delete }
if i <> -1 then

43Working with styles

© 1998-2008 Fast Reports Inc.

 StyleSheet.Delete(i);

3.8 Saving and loading a styles library

File extension for the styles library is “FSS” by default.

var
 StyleSheet: TfrxStyleSheet;

StyleSheet.SaveToFile('c:\1.fss');
StyleSheet.LoadFromFile('c:\1.fss');

	Working with TfrxReport component
	Loading and saving a report
	Designing a report
	Running a report
	Previewing a report
	Printing a report
	Loading and saving a finished report
	Exporting a report
	Creating a custom preview window
	Building a composite report (batch printing)
	Numbering of pages in a composite report
	Combination of pages in a composite report

	Interactive reports
	Access report objects from a code
	Creating a report form from code
	Creating a dialogue form from a code
	Modifying report page’s properties
	Report construction with the help of a code
	Printing an array
	Printing a TStringList
	Printing a file
	Printing a TStringGrid
	Printing TTable and TQuery
	Report inheritance
	Multithreading
	Reports caching
	MDI architecture

	Working with a list of variables
	Creating a list of variables
	Clearing a list of variables
	Adding a category
	Adding a variable
	Deleting a variable
	Deleting a category
	Modifying the variable’s value
	Script variables
	Passing a variable value in the TfrxReport.OnGetValue

	Working with styles
	Creation of style sets
	Modifying/adding/deleting a style
	Saving/restoring a set
	Clear report styles
	Styles library creation
	Displaying a list of style sets, and application of a selected style
	Modification/adding/deleting of a styles set
	Saving and loading a styles library

